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Electro-optic and piezo-optic tuning of second-order 
nonlinear processes in crystals 

David T. Hon 

Hughes Aircraft Company, Culver City, California 90230 
(Received 25 March 1977; accepted for publication 21 July 1977) 

The power-handling capability of crystals utilized for second harmonic generation (SHG) and other 
nonlinear frequency conversions has until recently been limited to a few watts of average output power, 
chiefly because of two conditions, namely, thermal instability and thermal gradients. Now, techniques 
have been invented that correct these conditions with a resulting order of magnitude increase in the 
average output power produced by SHG. This paper presents the theory for two techniques that solve the 
problem of thermal instability, namely, electro-optical tuning (EOT) and piezo-optical tuning (POT). 
Beam shaping, which prevents thermal gradients, will be treated in a separate paper. In this paper, the 
general physical theory is discussed both for EOT and POT. The equation for the phase-match condition 
is given. Interactive effects of temperature change Jl T, the applied electric field (E), and the stress field (T 

on a fixed-position crystal are treated. The general equations for EOT and POT are developed. Examples 
of the effect on SHG in cesium dideuterium arsenate (CD·A) are given. 

PACS numbers: 78.20.Hp, 78.20.Jq, 42.65.Cq 

I. INTRODUCTION 

The average power outputs of second-order nonlinear 
processes in crystals, such as parametric amplifica­
tion and second-harmonic generation (SHG), have for 
many years been limited to a few watts. Although pump 
lasers that deliver hundreds of watts are available, the 
crystals have not been able to handle more than 10-20 
W of average power. Efficient conversion by crystals, 
and hence the delivery of large quantities of average 
output power, is governed by many factors, such as 
nonlinear coefficients, peak power density, and beam 
quality. However, the principal factor that has made it 
difficult to deliver large average power outputs is the 
absorption of incident energy by the crystal, which 
creates two destructive conditions. One is thermal in­
stability, which prevents establishment of the phase­
matching condition for longer than brief moments. The 
other is the presence of thermal gradients, which pre­
vent the phase -matching condition from existing in all 
parts of the crystal. Typically, depending on the magni­
tude of the input power, initial conversion efficiencies 
of 30-50% will in several seconds decrease to ineffec­
tive levels. 

The problem has been solved by the development of 
techniques that prevent the development of these de­
structive conditions. Use of these techniques has re­
sulted in average output of tens of watts. 

The technique for eliminating thermal gradients, 
which involves beam shaping, will be described in a 
separate paper. This paper deals with the techniques 
for overcoming the problem of thermal instability. 
Thermal instability can be eliminated by various means, 
in particular, by the application of electrical and stress 
fields. This paper presents a physical theory of elec­
tro-optic tuning (EOT) and piezo-optic tuning (POT) for 
second-order nonlinear processes and gives examples 
of second-harmonic generation (SHG) in cesium 
dideuterium arsenate (CD*A). 

II. GENERAL THEORY 

A. Second-order nonlinear optical process-Phase· 
match control 

While EOT and POT are generally applicable to many 
optical processes in solids, this diSCUSSion is limited to 
second-order nonlinear optical processes, which are 
the most important of the nonlinear optical process-
es. 1,2 Both tuning concepts will be treated in the same 
discussion here, even though, in practice, they are 
usually not applied together. 

Here, we assume the presence of three quasimono­
chromatic fields, 

(1) 

with W3 = W, + w2 • In parametric amplication (or, if 
feedback is present, parametric OSCillation), down-con­
verSion, or difference-frequency generation, "-'3 is the 
pump. In sum-frequency generation or parametric up­
conversion (of which SHG is a special case), WI and w 2 

are the pumps. Maxwell's equations of Eq. (1) can be 
decomposed into three equations nonlinearly coupled 
with one another through the polarizations, 

etc. , 

where X( 1) and X(2) are the first- and second-order 
polarizabili ties. 

In the copresence of all three waves, the direction 
and magnitude of energy flow is dependene on the rela­
tive phase relationships among them. Maxwell's equa­
tions provide the conditions for optimal energy transfer, 
in terms of the phase -mismatch quantity t.K, defined by 

t.K= K(w3 ) - K(w2 ) -K(w,) 

=0. (2) 

Equation (2) defines the phase -match condition. 1-3 

B. EOT and POT of the phase·matching condition 

To produce the phase -match condition necessary for 

396 J. Appl. Phys. 49( 1), January 1978 0021·8979/78/4901-0396$01.10 © 1978 American Institute of Physics 396 

 [This article is copyrighted as indicated in the article. Reuse of AIP content is subject to the terms at: http://scitation.aip.org/termsconditions. Downloaded to ] IP:

141.209.144.159 On: Wed, 10 Dec 2014 17:45:15



a given second-order nonlinear process, it is necessary 
to make use of the dispersion, birefringence, and tem­
perature conditions of a given crystal. Thus, the most 
common techniques involve (a) choice of material, (b) 
angular tuning, and (c) temperature tuning. EOT,4-7 
and now POT, both reported for the first time in this 
paper, have recently been added to this list of phase­
match techniques. 

In particular, EOT and POT can be used to compen­
sate for temperature fluctuations in high-average -power 
applications. For the rest of this section, our discus­
sion will be restricted to the interactions of tempera­
ture change 6.T, applied electric field E, and the stress 
field a on a given crystal in a fixed position. We assume 
that at the initial condition of 6. T = E = a= 0, the tem­
perature of the crystal is in the phase -match condition, 
which provides the desired second-order nonlinear pro­
cess in terms of wavelengths, polarizations, and direc­
tions or propagation of the participant waves. Thus, any 
further disruption of the phase-match condition may be 
described by the phase -mismatch quantity 6.K as 

6.K= 6.K(w3) - 6.K(w l ) - 6.K(wz), 

where 6.K(w), etc., are the changes in K(w l ), etc., 
that have been brought about by 6.T, E, and a. 

(3) 

rt is conceivable that judicious application of E and a 
can neutralize or compensate for disruptions caused by 
crystal heating, 6.T. 6.K [Eq. (3)] would then still be 
equal to zero; that is, 

6.K= 6.K(w l ) - 6.K(w 2 ) - 6.K(w) 

=0. (4) 

It is assumed that the parameters Wu w2 , and w3 , along 
with their polarizations and directions of propagation, 
will be the same as in the initial phase-match condition. 
This compensation by the application of E and a is the 
basis of EOT and POT. 

A wave vector is related to the index of refraction by 

where c is the vacuum speed of light and n;;(w) is the 
frequency wand polarization e dependent index of re­
fraction, which is generally described by the index 
ellipsoid 

Bjj(w)XiXj = 1 (i,j= 1,2, 3). 

The index ne(w) of an arbitrary polarization e 
= (eu cz, c3 ) is given by Eq, (7), 

ne(w) = CBijB ij c i e)-1/2. 

(5) 

(6) 

(7) 

In a principal coordinate system, cross terms of Bij 
vanish and 

n i (w)=Bj;/2 (i=1,2,3). (8) 

Under the influence of 6.T, E, and G, the index is 
still represented by an ellipsoid, although somewhat 
changed, and Eq. (5) becomes 

with 

397 

[Bij(w)+6.Bi/w)]XiXj=l, (9) 

6.B ij(w) = (fij l(w)6.T + Z i} k(w)E k + 1T ijklakl 

(i,j,k,I=I,2,3), (10) 

J. Appl. Phys., Vol. 49, No.1, January 1978 

where /;iii' Zijk' and 1TiJkl are components of the pyro­
optic, electro-optic, and piezo-optic constants, which 
are second-, third, and fourth-rank tensors, 
respectively. 

By using Eqs. (5) and (10) and a differentiation of 
Eq. (7), Eq. (4) can be rewritten as 

6.K = {[ - 1Tw3n~( w3) / c 1 
Xe i(w3)e /w3)[ 6'Jw)6. T + Z i1 k(w)E k + 1T ij/m (W3)O,m]} 

-{similar expression for wJ 

-{similar expression for w 2} 

=0. (11) 

This is the general equation for the EOT and POT of 
second-order nonlinear processes for the compensation 
of temperature fluctuations. It usually reduces to a 
simpler form in specific applications. 

C. Genuine and para·EOT or para·POT 

There are cases when the applied E and a may cause 
such a change to the index ellipsoid that one or more of 
the originally defined interacting beams simply must 
undergo change, e. g., polarization, during propagation, 
in ways directly and adversely affecting the nonlinear 
process itself. In general, the deleterious effects can 
be made arbitrarily small by limiting the magnitudes 
of the applied fields, In fact, in many cases, the delete­
rious effects are found to be negligibly small when 
fields capable of producing ample tuning range are used. 
That is, EOT and/or POT and the present theory are 
still applicable for all practical purposes, Nevertheless, 
such cases are called "para" -E OT or "para -POT, as 
contrasted to "genuine" EOT or POT, because the 
applied electric or stress field never completely com­
pensates for a shift in temperature in the sense of 
Eq. (4). 

III. EXAMPLE-SECOND·HARMONIC GENERATION 
IN CD*A 

We are now ready to look at a special case of EOT 
and POT, namely, their application to SHG in tempera­
ture-tuned 900 -phase-matched CD*A, As noted, SHG is 
a special case of parametric up-conversion where 

is the pump, and 

w3=2w 

(12) 

is the product. The relative SHG effiCiency is given by 
the familiar equation4 

P(2w)/[P(2w) lmax = sin2(t6.KL)/(t6.KL)2, 

where L is the length of crystal and 

6.K=6.K(2w) -26.K(w), 

(13) 

(14) 

which is reduced from Eq. (3) for the present case of 
type-I phase matching. 

An isomorph of KDP, CD*A has a 42m point group 
symmetry. The optimal SHG orientation is shown in 
Fig. 1. In temperature-tuned 90° phase matching, the 
normally degenerate Xl and x 2 axes are at 45" with the 
propagation direction k of the 1. 06 - JJ. fundamental beam 
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X'2'W X 

X <l(/f·· .. \1 K / 
2 • ) r:::; 
( ... 1 .... X'1 

I 

FIG. 1. Crystal orientation of CD*A in SHG. The fundamental 
1. 06-J.L w is polarized in the degenerate xlx2 (or xy) plane at 
45° with either axis. The green light 2w produced by SHG is 
polarized along the X3 (or a or c) axis. 

which is polarized in the X 1X 2 plane. The 0.53 -11 SHG 
beam is polarized along the X3 axis. The polarization 
unit vectors are therefore 

and (15) 

e(w) = x3 • 

Substitution of Eqs. (12) and (15) into the general equa­
tion (11), and noting that n,;(2w) = ne(w) = n by definition 
of phase matching, yields 

{Hlill (2w) + 822(2w) + 812(2w) + 8 21(2wll- 833(W)}DoT 

+ {Hzm(2w) + z22k(2w) + z12k(2w) + Z21k(2w) 1 
- Z33k(Wl}E k+ {H7Tu1m (2w) + 7T221m (2w) + 7T121m (2w) 

+ 7T21lm(2w)]-7T331m(w)}alm' (16) 

Further simplification comes from crystal symmetry, 
which dictates what forms the tensors 8, z, and 7T must 
take. For CD* A, in reduced notations, Eq. (10) reads 
reads8- 10 : 

DoB I I DoB2 [;j DoB3 • 
DoT+ 

~ 
c"B4 

c"B 5 

c"B6 • 

X ! a1 

a2 -- • a3 
+ 

~ 
a4 

a5 

• a6 

(Small dots = 0, connected large dots have equal 
values. ) 

Thus, Eq. (16) simplifies to 
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(17) 

[1i , (2w) -1i3(w))DoT+Z6k(2w)E k 

+ [7T;1(2w) -7T~/2w) -7T~I(W) lap 
k=I,2,3; 1=1, ••• ,6, 

where 

== ~1Til if 1== 4, 5, 6, 

due to the definition of the reduced notation for the 7T 
tensor. 

A. Electro-optic tuning 

(18) 

For EOT, a1 = O. According to Fig. 1, the applied 
field E may conveniently take the form of either E = EX3 
or E = (E/{2 )(x1 + x2 ). (Other crystal orientations are 
possible but they will not be discussed here. ) 

1. EDT case I 

In case I, E = Ex3 • Eq. (18) becomes 

[e1(2w) - &3 (wllc"T + Z63(2w)E = 0; 

and, it follows that 

(c"T/E)j =Z63(2w)/[&1(2w) -1i 3(w)), 

which is the case-I EOT coefficient, which gives the 
shift in the phase-match temperature due to an applied 
E field (see Fig. 2). Equivalently, 

t d )-1 (c"T/E)I=n3z63 (2w) \2 dT [n 1(2w) -n3(w)1 , (19) 

the last step being a simple application of Eqs. (8) and 
(10). 

However, a more useful expression which is in terms 
of experimental observables is 

(DoT jE)1 =Ln30Tz S3 (2w)jX(w), (20) 

where X(w) is the vacuum wavelength of the fundamental 
beam and oT is the distance between the maximum and 
the first minimum on the SHG output versus tempera­
ture curve which is shown in Fig. 3. (It is also a full 
width at 0.405 maximum). Equation (20) was discussed in 
paper on EOT4 and can easily be obtained by (i) noting 
that Fig. 2 is described by Eq. (12) which has its first 
minimum when tDokL=7T, and by (ii) applying Eq. (5) to 
Eq. (19) • 

To check if this case is a genuine or a para-EOT, the 
electro-optic effect on propagative beams wand 2w 
should be scrutinized. According to Eq. (17) 

DoB! · · · 
c"B2 

[J~E c"B3 · · · =E 
DoB4 • • · 
DoB5 · • • 

DoBs · · • zS3 

The cross term DoBs =zS3 means for the index ellipsoid, 
a 45° rotation of the originally degenerate x! - X2 axes 
to the nondegenerate xf - x2 axes as shown in Fig. 1. 
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SHG POWER 

• 
TPHASE-MATCH oT 

FIG. 2. Phase-match temperature profile. 

This leaves both the wand 2w beams still polarized 
along principal axes throughout the crystal, Only thin 
velocities are electro-optically modifiedo It is theoreti­
cally possible to find an E field of appropriate magni­
tude to compensate for any temperature change in the 
sense of Eqo (4); no degradation in the overall FD effi­
ciency will result. This is a case of genuine EOTo 

2. EOT case /I 

In case II, where E = (E/,[2 )(x1 + x), Eqo (18) be 
becomes 

[1:I1(2w) - 1:13(w)]~T + (E/,[2 )[Z61(2w) + Z62(2w)]= 0. 

(21) 

Since both Z61 and Z62 vanish according to Eqo (17), there 
is no EOT. In any event, this case would not have been 
a genuine EOT, for the electro-optic effect here is, 
according to Eq. (17), 

~Bl 

~B2 

f] 
~B3 

E E 
~B4 =/2 

~ 
-/2 Z41 

~B5 Z41 

~B6 • 

(22) 

The creation of the cross terms ~B4 and ~B5 implies 
a rotation of all three principal axes of the index 
ellipsoid. Both wand 2w beams, as defined in the 
original phase -match condition, must propagate with the 
polarization vectors gradually changing, resulting in a 
disruption of the SHG process itself. So, even if EOT 
had existed according to Eq. (21), this case would have 
been one of para -EOT at best. 

B. Piezo·optic tuning 

For POT, in Eq. (18) E k= 0. Two directions of stress 
can be conveniently applied, namely, along X3 and 
(j\ + x2 )· 

1. POT case I 

For case I, (1= (1, 0, 0, 0, 0, O)/n. Upon using the 
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symmetry rules for tensor in Eq. (17), Eq, (18) 
becomes 

[l:I j (2w) - 1:13(w) ]~T + [1T 13(2w) - 1T33(W) ]a= 0 0 (23) 

For case I, the POT coefficient (~T / alI> which de­
scribes the shift in the phase -match temperature due to 
an applied stress a, is 

(~T / ali = [1T33(W) -1T 13(2 w)j [1:11 (2w) - 1:13(w)j-j (24) 

It can easily be shown that 

(~T/a)I= [1T33 (W) -1T13(2w)]Ln36T/,\(w) (25) 

by reasons identical to those leading to Eq. (20). 

Is this a case of genuine POT? According to Eq, (17), 
the piezo-optic effect is 

~Bl X I 1T13 

~B2 1T 13 

~B3 -- • 1 1T33 
=a =a 

~B4 

~ ~B5 

~B6 • 

Evidently the crystal symmetry, and thus the principal 
axes of the index ellipsoid, is unchanged. It is a case of 
genuine POT. 

2, POT case /I 

In case II, where the applied stress is parallel to 
(x j +x2 ), 

a= (a/12 )(1,1,0,0,0,2) 

in the reduced notation. 11 Upon application of the sym­
metry rules for CD* A a tensor in Eq. (17), Eq. (18) 
becomes 

[81(2w) - 1:13(w)]~T+ [1T11(2w) -21T31(W) + 1T 12 (2w) 

+ h 66(2w)] (a//2) = 0 0 

It follows that, 

(~T /a)Il = [21T31 (W) -1T11(2w) -1T 12(2w) - h 66(2w)] 

x [1:I 1(2w) - 1:13 (W)j-l 

= [21T31 (w) - 1T 11 (2w) - 1T 12(2w) - h 66(2w)] 

XLn 36T /,\(w) (26) 

for the POT coefficient in case II. Again, is this a 
genuine case of POT? According to Eq. (17), the piezo­
optic effect is given by 

~Bl X I 1 

~B2 1 

~B3 - • a 
~B4 =,[2 

~ ~B5 

~B6 • 2 
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FIG. 3. Unclamped electro-optic effects on SHG. Efficiency 
versus temperature for different applied E fields. E-field 
pulse duration ~ 200 !lS, 6.E= ± 850, 2 1800, ± 2750, and 
± 3250 V /cm. 

u 
Tf 

This is similar to EOT case II, The originally degene­
rate XI - -'2 axis of the index ellipsoid is rotated 45° to 
the nondegenerate x; - x; axis. 113 also changes due to 
6.B3 = 21T 13 ; but the wand 2w waves are still polarized 
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1 MMDIA 
BEAM 
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WEIGHTS 

along principal axes, x; and '\3> respectively, through­
out the crystaL So, this is also a genuine POT 

3. POT by hydrostatic pressure 

Conceivably, hydrostatic pressure can be used for 
POT when the crystal is submerged in a fluid. For some 
applications, this technique may offer practical ad­
vantages over unidirectional POT. Here, Eq. (17) reads 

6.B 1 X I 1 

6.B2 1 

6.B 3 -- • 1 

6.B.! 
=u 

~ 6.B" r 6.B G • 

1T 11 + 1T 12 + 1T 13 

1TU+1T12+7T13 

27T'31 + 1T33 
=u 

The equivalent of Eqs. (24) and (25) for hydrostatic 
POT is 

(6.T/U)H= [21T31(W) + 1T33 (W) -1T u (2w) -1T 1Z (2w) 

- 1T13(2w)] Ln3 6T /A (w)o 

As hydrostatic pressure never changes the symmetry of 
a crystal, only genuine POT can occur. 

GLASS 

FIG. 4. Experimental setup for 
piezo-optic tuning (POT). 
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FIG. 5. Piezo-optic tuning (POT) in Cd*A. Relative SHG output 
versus temperature for various pressures for pressure along 
(xl +X2)' 

V. EXPERIMENTAL RESULTS 

Experiments involving the EOT for SHG in CD*A have 
been reported in Ref. 4. Therefore, only the principal 
result will be reproduced here. Figure 3 shows the 
SHG power versus temperature for various applied E 
fields. 

With respect to POT, Fig. 4 shows the experimental 
setup that was used for applying unilateral pressure to 
the crystal while maintaining it at or near the 90°­
phase-match temperature. The oil immersion oven was 
rigidly mounted to the optical bench to ensure that the 
crystal remained immobile while the pressure was 
applied. The 1-mm-diam 1. 06-llm beam from a 20-mJI 
10-Hz YAG laser traversed the center of the 0.4xO.4 
x 1-cm3 crystal. Monitoring of the position of sutface 
reflections verified that the crystal did not move. 

Several precautions were taken to ensure that pres­
sure was applied uniformly. A massive weight holder 
and guide directed the force of the weights onto the 
crystal. The surfaces of the crystal were ground flat 
and parallel. When mounted, the crystal, cushioned by 
thin slips of paper, was sandwiched between two flat 
steel blocks. The upper block had a dimple in its center. 
This dimple received the steel ball embedded in the 
tip of the weight application needle. 

The tip of the needle is partially immersed in the oil, 
and it is wound with heating coils that maintain its 
temperature identical to that of the rest of the oven. 
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TABLE I. Electro-optic and piezo-optic tuning coefficients for 

Case I 
E or 0'11 X3 

Case IT 

EOT coefficient 
(/:;.T/E) 
(OC cm/V) 

Eorull(Xl+x2) 0±2X10-5 

POT coefficient 
(/:;.T/a) 
(OC cm2/dyn (OC/psi)] 

o ±2.8 XlO-8 
(0 ± 2 Xl 0-3) 

4.4 x10-7 ± 10% 
(3.12x 10-2 ±10%) 

These precautions, and the procedure, ensure that the 
temperature of the crystal is uniformly constant. 

The experimental procedure follows: (1) Allow oven 
to stabilize at a temperature with no weight applied. (2) 
Take SHG reading. (3) Lower weight(s) and quickly take 
a second reading. (4) Quickly raise weight, note that 
reading returns to previous value, (5) Change tempera­
ture and repeat steps (1)-(5). Temperature-profile 
curves for several different pressures" 0, 92, 170, and 
244 psi, were plotted from this data, and the shift read 
off. The results are plotted in Fig. 5. Shifts of as much 
as 10 °C in the phase -matched temperature were ob­
tained. Figure 5 also shows that large applied pressures 
can cause some degradation in efficiency and broadening 
of the SHG curves, This is believed to be due to stress 
fringe effects in this finite -sized crystal, and not an 
indication of "para-POT". 

The EOT4 and POT coefficients for SHG in CD*A have 
been measured, and they are listed in Table 1. 

The analysis in Sec. lIlA 2 correctly predicted a zero 
coefficient for EOT, case II, It also predicted "genuine" 
tuning and nonzero coefficients for the rest. Surprising­
ly, the coefficient for POT case I was found to be zero 
within experimental accuracies. Thus, it follows from 
Eq. (24) that 

1T33(W) -1T 13 (2w) -0. 

For POT case II, the application of Eq. (25) to Fig. 5 
yields 

21T31(W) -1T11(2w) -1T12(2w) -h66(2w) 

= (2.5 ± 0,3) x 10-12 cm2/dyn, (26) 

where the values L = 1 cm, n = 1. 5T= 5. 5 °C have been 
used. There are insufficient published data on the 
piezo-optic tensor 1T on this crystal for a corroborating 
comparison, even though the order of magnitude of Eq. 
(26) appears correct. 

However, in EOT case I, the application of Eq. (20) 
in Ref. 4 re.sulted in the value of the electro-optic con­
stant z~3(2w) = (24, 3 ± 0.6) x 10-10 cm/V, which compares 
well with extrapolations of published values. It can be 
seen from Fig. 4 that no detectable degradation of SHG 
efficiency occurred as a result of the applied E field 
which is consistent with the fact that this is genuine 
EOT. The E-field fringe effect is believed to be small 
due to the relatively low reSistivity of CD*A crystal, 
about 4X105 ncm. 
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9Algebraically, Eq. (17) reads t.Bi ~ {Jit.T+ zijEj I "i.rr. with i, 
ko-l, ••• , 6, andj=l, 2, :l. Note that (i)t.B j t.B:l;,-t.B::", 
etc., (ii) in changing from Zijk to Zij no factors of i or 2 ap­
pear (iii) "m n - "ijkl when n = 1, 3, or :1: Timn c{!,Tiiikl whcn II 

~ 4, 5, or 6, and (iv) (T,j = (J32 (T23 , etc. 
100 takes this from because temperature change does not alter 

the symmetry of the crystal and because CD * A has a uninxinl 
symmetry. 

I1This can be obtained by observing that this stress tensor is 
(1,0,0,0,0.0) in the coordinate system [xi, Xl, :\'~J cc [(1/ 
.[2Hxj+ X2), (1//2) (Yl - 'Y2) , x3l. When this coordinate is rotated 
to the coordinate (i\,x 2,X3), the stress tensor takes the form 
as indi cated. 
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