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Pulse compression by stimulated Brillouin scattering
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A 20-nsec Nd:YAG laser pulse is compressed to a 2-nsec phase-conjugated pulse in a tapered glass tube filled with
methane at 130 atm. A comparison with stimulated-Raman-scattering pulse compression is made. A semiclassi-
cal theory is proposed that agrees well with experimental results.

Pulse compression by backward-stimulated Raman
scattering (SRS) has been studied quite thoroughly in
recent years.1-'0 The possibility of pulse compression
by stimulated Brillouin scattering (SBS) has also been
noted,2 especially in spurious damages occurring in long
optical fibers.1"-15 We have recently demonstrated
controlled pulse compression by SBS with high energy
efficiencies.16 The compressed pulse is wave-front
reversed17 (spatially phase conjugated) while the po-
larization state behaves like a mirror reflection. These
facts combine to make this technique potentially ex-
tremely useful for compressing laser pulses to the 1-nsec
regime.

In our experiment, a 200-mJ, 20-nsec pulse from a
single-longitudinal-mode Nd:YAG laser is directed into
a glass tube placed inside a methane (CH4) cell pres-
surized to 130 atm. The inner diameter of the 1.3-m
glass tube tapers gradually from 4 to 2 mm. By using
a fast photodiode and a scope with a bandwidth of 500
MHz, the SBS pulse is measured to have a sharp leading
spike of 2 + 0.5 nsec, followed by a smooth tail that re-
sembles the trailing half of the input pulse. This is
shown as SBS1 in Fig. 1. This partially compressed,
phase-conjugated pulse is allowed to return to the laser,
where a second pulse (input 2) is generated. This pulse
is compressed a second time by the same tapered tube
to obtain a 2 + 0.5 nsec pulse (SBS2). Also shown in
Fig. 1 (shaded) is the energy transmitted during the first
compression. After initially following the shape of
input 1, the energy suddenly drops to zero, indicating
a sudden transformation into full SBS conversion. We
have estimated that 70% energy conversion is achieved
in the first compression. As illustrated, input 2 has a
very irreproducibly jagged shape that is characteristic
of a multilongitudinal-mode pulse. This is probably
because it results from an injected pulse (SBS1) whose
Brillouin-shifted frequency does not match any longi-
tudinal modes of the laser cavity. The short coherence
length that input 2 has is probably responsible for the
low energy efficiency of the second SBS compression.
If desired, the backward-traveling SBS1 can be ex-
tracted easily and completely by the use of a polarizer
and a 450-oriented X/4 plate.

In order to understand these compression results, it
is appropriate first to compare SBS with the more fa-
miliar SRS. SRS is stimulated scattering from optical
phonons, whereas SBS is from acoustic phonons.

Several important differences are summarized in Table
1 for a typical liquid in the visible regime.2

In the theoretical treatment, the equations of motion
of SRS are simpler than those of SBS because optical
phonons are localized excitations in a fluid, whereas
acoustic phonons are cooperative excitations. More
importantly, the extremely small r in SRS can often be
ignored; this reduces the four equations of motion for
backward SRS to the following forml1 2:

+ n 's=IL,
az C at

19IL n ILdz + ct = 0IS, (1)

where IL is the input laser intensity, I, is the backward
SRS intensity, and a is the coupling constant for light
propagating along the z axis. In Eq. (1), n is the re-
fractive index and c is the speed of light in a vacuum.
Note that the phonon variable has been eliminated.
Equation (1) is a basis for some common transient- and
steady-state theories of SRS. SRS pulse compression
and SRS amplifiers in general are quite well understood.
A more elaborate theory explains why picosecond
pulses-comparable with r-have been achieved by
SRS pulse compression.1" 8" 9 (However, the fact that
many SRS's are initiated by self-focusing, which is er-
ratic, has made a full test of these theories a bit diffi-
cult.)
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Fig. 1. (a) Schematic of experiment: 0, oscillator; P, polar-
zer; Q, A4 plate; A, amplifier- C, SBS cell; and D's, detectors.
(b) Input, throughput, and SBS signals as detected by D1, D2,
and D3, respectively, in a two-step pulse compression.
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Table 1. Comparison between SRS and SBS for a
Typical Liquid in the Visible Regime

Relaxation Frequency Cross Section
Time r (see) Shift (cm'1) (cm-1 sr')

SRS 10-12 1000 10-7
SBS 10O9 1 10-6

In contrast transient SBS is much less well under-
stood, even though the steady-state theory has been
satisfactorily developed.

Ignoring temperature effects, the Navier-Stokes
equation may be written as

2
:

_-8 + V 2~po + dP= 88 A<E')2 (2,
at 2 PO at - 2

where p' is the fluctuation of the medium's density from
its average value po, v is the velocity of sound, X is the
viscosity of the medium, and ye is the electrostrictive
coupling constant. K = EL' + ES' is the total electric
field arising from a plane incident wave EL' traveling
to the right and its SBS wave Es' traveling in the op-
posite direction. Fortunately, it can be shown that, in
the envelope approximation, where

1
p' = -{p exp[i(kz - wt)] + c.c.4 etc.,

2

all the spatial terms in the ensuing equation are negli-
gibly small. We are left with

6 W ( 2 + rp (3)

Equations (3,) (4), and (5) (Ref. 2) constitute the dy-
namic equations of SBS:

_EL K n rldEs = 4s ^ eELP*, (4)
Oz C at 4cn po

+- nE ;=LDLeE (5)
Oz C at 4enpo

Here = -= nk 2/po is the Briliouin Iinewidth. If the
compressed pulse width St is greater than r, then only
the p term in Eq. (3) is important, and Eqs. (3)-(5) can
be reduced to the format of Eq. (1); then SRS pulse
compression theory is applicable except for changes in
constants. If 6t is comparable with r, the Op/at term
at first tends to slow down the speed of compression but
eventually can serve to compress the pulse further to the
regime of bt < r, as in our experiment. In this regime,
while the Op/Ot term compresses, the 02 p/0t 2 term will
mathematically limit the pulse width to awl. A full
discussion of the dynamics of SBS pulse compression
will be the subject of a future paper. For the moment,
a simple semiclassical theory is presented that offers an
intuitive picture of SBS pulse compression while pro-
viding results in good agreement with experiments.

The key to SBS compression is the tapered light
guide. The threshold of SBS is reached by the leading
edge of the pulse at the far end where the smaller di-
ameter forces an increase of power density. As the SBS
pulse sweeps backward, it beats with the remainder of
the incident wave to create a strong acoustic wave
with

ko -kb , WC 2nUoWL/c, (6)

which in turn acts as a bulk grating to reflect the inci-
dent wave further to strengthen the SBS wave coher-
ently2'-all in accordance with Eqs. (3)-(5). Even
though the phonon wave travels in the forward direction
at a phase velocity of -105 cm/sec, its amplitude enve-
lope p must necessarily expand itself rapidly backward,
following closely the leading edge of the SBS wave,
which travels with a speed of c/n. It is postulated that
the leading edge of this phonon envelope forms the
mirror that reflects and, owing to its growing reflectivity,
compresses the pulse. This is illustrated in the time
sequence in Fig. 2. Such a postulate necessarily leads
to the following quantitative model.

The reflectivity r of an acoustic wave, when the Bragg
condition is satisfied as in the case here, is given by23 :

r = tanh2(7rlvMfV/\/), (7)
where I is the interaction depth, Io is the acoustic power
density, and

(8)

the acousto-optic figure of merit, with P12 the elasto-
optic constant. It can easily be shown that within 5%,
Eq. (7) can be approximated by a simpler equation,

r - sin2 (rlx/IiJ72X). (9)
To calculate Io, let us assume a square incident pulse

in a uniform light guide of diameter d. Let us assume
that there exists an interaction region with length L, in
which efficient SBS occurs. This is suggested by the
transmitted pulse shape in Fig. 1. Since the creation
of one SBS photon entails the creation of one phonon,
the following is true:

(dN/dt) = (dNo/dt), (10)

where A, and N0 are the total number of SBS photons
and phonons, respectively, produced inl this intemetion
volume during a photon round-trip time of

T = 2nL/c. (11)

If we further assume zero attenuation, then the fol-
lowing will be true:

N8 = No. (12)
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Fig. 2. Time sequence of SBS compression of a square inci-
dent pulse in a tapered light guide.
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This assumption is not unreasonable for our experi-
ment, in which the cell length is 1.3 m, so T is at most
8 nsec while the phonon lifetime is about 30 nsec.

Thus the acoustic energy So produced is
t o = Noho = (6 Lr'wo/co0), (13)

where r' is the SBS efficiency and CL is the incident
energy encountered by the leading edge of the backward
SBS wave in time T within the volume L X d2. The
acoustic power density is

Io u vo/Ld 2 - r'6LouO/Ld 2aWL. (14)

Substituting Eqs. (6), (8), and (14) into Eq. (9), and
setting r = r' = 1, one obtains

1 - (Xc/2n4pl2)pO5VO/P, (15)
where P = (&ITd2 ) = (ctL/2nLd 2) is the power den-
sity of the incident light. Now 1 is the penetration
depth of the acoustic wave necessarily generated in an
efficient SBS. If it is not larger than L, it may be con-
sidered as the thickness of the bulk-grating mirror,
which is the leading edge of the phonon envelope, that
sweeps backward at the speed of c/n. The incident
energy is being swept up and turned around within a
region of space that is I long. The compressed pulse
width is therefore simply

6T - nl/c - (X/2n3 p1 2) POV/P (16)

For CH4 at 130 atm, on calculating p12 with the help
of Refs. 12 and 21, we find that OT = 2.1 nsec. (In Ref.
12, the SBS gain is given by g = 2irn 7p12 /cX2 p0u0 Av.
In Ref. 21, g - 0.09 cm/MW and Avy 20 MHz are
measured.) It is perhaps fortuitous that the result from
such a model agrees so well with the observed values of
2 ± 0.5 nsec. But it must be stressed that the assump-
tion of zero attenuation leading to Eq. (12) is more
justified now because 6T << r 30 nsec. Only fresh
phonons at the leading edge of the envelope play any
role in the reflectivity.

Of course, Eq. (16) is true only if the conditions
leading up to it are satisfied. Our experimental setup
satisfies these conditions with perhaps one flaw, namely,
that the cell is only 1.3 m long. Ideally it should be
about half of the pulse length, or 3-4 m, if one wishes to
compress a 20-nsec pulse in one passage. As it is, about
half of the energy is compressed into one spike of 2 nsec.
The strong acoustic wave left in the pulse's wake (re-
member that damping time r 30 nsec) then effectively
backscatters the remainder of the pulse near the en-
trance end by the inertial property familiar in double-
pulse SBS experiments.20 This shows itself as the tail
of SBS1 in Fig. 1.

Significantly, Eq. (16) is independent of L. In fact,
for an incident pulse of uniform power density, it de-
scribes the constant width of a leading spike, which, if
given a chance, will grow to great magnitudes to domi-
nate the entire SBS pulse. It is almost certain that SBS
pulse compression is responsible for the damage of
many optical fibers."1-15

From Eq. (16), the peak power density Pc of the
compressed pulse is given by

PI (2nAP1c6T) - (4An4pp 31 2 /cX pvC), (17)

where A is the length of an effective compressor cell
suitable to compress a square pulse of width AT =
(2n A/c) or to compress a cw laser into a train of pulses
with periodicity AT. If peak power damage is (naively)
taken as a limiting mechanism for SBS pulse compres-
sion, Eqs. (16) and (17) can be reformulated to give

(5T)M - (AX2 p0vo/2cPmn5 p12 )1/3 , (18)

where (5 T)M is the minimum pulse width achievable in
a medium with a peak-power-damage threshold of PM.
Because of the cubed root in Eq. (18), (6T)M should be
relatively insensitive to specific material parameters and
should fall within the 0.2-2-nsec range.

Other potential limiting mechanisms that may limit
SBS pulse compressions are forward SRS and self-
focusing. These can be solved by using Raman-weak
materials and by proper use of guided geometry, re-
spectively.

Finally, no multiple SBS is detected. This is not
surprising because 6T << r. Thus the slower response
of SBS is an important advantage in pulse compression
over SRS, whose fast r consistently lead to multiple
scattering in experiments designed for power scaling.

I thank A. Yariv, R. W. Hellwarth, and D. M. Hen-
derson for useful discussions.
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